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Mechanical behavior of geomaterials (rocks, soils):

Non-linearity from the onset of loading

Strong pressure dependence

Coupling between shear loading and volumetric response
Time dependence

Coupling with diffusion-like phenomena: fluids, thermal heating
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Approaches to constitutive modelling:

= Plasticity
= pressure dependence: Mohr-Coulomb, Drucker-Prager, ...
= strain softening
= non-associated plastic flow

= Fracture modelling:

= Linear Elastic Fracture Mechanics (LEFM)

= Non-linear fracture models: cohesive-zone approach
= Damage models

= gcalar valued
= tensor valued
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Pressure dependence: Mohr-Coulomb, Drucker-Prager, ...
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Strain softening

Conseqguence:

onset of strain softening

o :€<(

snear Suess

Loss of material stability!

shear strain
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Non-associated plastic flow

MW/(I —sin¥))

atan (1-2v) —=E

A €

Typical experimental outcome
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Non-associated plastic flow

non—dilatant m
flow

K Elasto-plastic stiffness:

e TTe
D — D D°mn"D

= ~ h+n"Dem
> o)
Non-symmetry!

Again: possible loss of material stability: O : e’ < 0

Negligible or no elastic strain rates: g : € < ()



The

University
Of

Sheffield.

Department of

Civil and Structural Engineering

Example of mesh dependence and lack of convergence upon mesh refinement
Load [N] (x107)
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Input: strain-softening relation
o A

i +

~.

Fe

ft + h(E — K,?;)
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1D example of mesh dependence

m elements

Output: structural response of bar
o n(o—f)

E=—+
E mE &

f; +

* Energy dissipation dependent
on discretisation

« Zero energy dissipation when
m goes to infinity

o ¥
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The cohesive approach to fracture
(Dugdale — Barenblatt approach)

L] ) ¥
» There exists a finite zone ahead of Y ‘ L
the crack tip in which fibre breakage,
micro-cracking and plasticity occur

traction free debonding perfectbond

» Important parameters:
= Tensile strength

= Fracture energy: Energy required to create a unit area of crack

= Shape of decohesion curve (important for quasi-brittle failure)
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= Shape of decohesion curve (continued...)

. . . L] )
Ductile failure Quasi-brittle failure , ey
(metals) (concrete, rocks) aull
g t
i L
ﬁ; -ﬁ: traction free debonding perfect bond
Ge

ft dv, = t, 8g€ = tn = tn(vn, K)

—> Discrete traction separation law
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1D example of mesh dependence

m elements o
L —*

[ —

L

|A ~|

Smearing out of the fracture energy over a finite width:

G. = fw /OO ode(n)dn
n=0 J e=0

Average strain independent of discretisation & size effect introduced:

c — z . Qgc(o-_ft)

E- " LJ
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But, it is not the full story!

4 O
One-dimensional wave equation:
> 0% 0%u g
ta o — P35
0x? Ot?
E £

Phase velocity:

| B
Cf = —t —> Imaginary wave speeds
%
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= Consequences of strain softening and non-associated plasticity:
= Loss of material stability (Diderot / d’Alembert: stability = “rigid, unmovable”)

0‘. : 6 < O <«— Only equivalent to Lyapunov’s definition
' for small-strain elasticity

=D € — ¢ D:é<() — det(DY™)=0

= Loss of structural stability

/&:édV<O —> éT(/BTDBdV)é<O
1% 14

K= / B'DBV —  det(K¥™) =0
V
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Consequences of strain softening and non-associated plasticity:
= Loss of uniqueness

Ka=M* —» KAa=0 — det(K)=0
= Loss of ellipticity

u=u+Hsgu — e=V¥"u+HsV¥"u+0s (a®@ng,)>™

[ts] = ng, - [6] —> [td =ng,-D: [¢]

[[td]] = C(ngd D - nSd) . ﬁ

det(ngd - D - l’lgd) — (0 Mesh sensitivity!
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Loss of ellipticity (or hyperbolicity in dynamics) is the underlying
cause of mesh dependence. It is a fundamental mathematical
Issue, and occurs for any numerical method.

Possible solutions:
* Include viscosity / rate dependence
= |ntroduce non-local terms through upscaling / homogenisation

= Include more “physics” in the constitutive descrlptlon e.g.,

« Thermal heating
* Fluid flow, however ...
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Impact loading of 1D fluid-saturated medium

6]
fie-
e
O Finite differences in space 5 to avoid numerical
o Fully explicit time integration regularisation
c 4 c A
Gy |

loading scheme softening relation
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strain [x 0.0001]
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Solution depends on:

oGrid spacing
oTime step
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The World 1s neither continuous, nor discontinuous

The perception of continuity, or of a discontinuity,
depends on the level of observation

At a certain level of observation a discontinuity can
be modelled as a continuity (smeared concept), but
equally well as a discontinuity (discrete concept)

In some cases it is meaningful to use a discrete concept
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We wish to model the propagation of cracks or shear bands:
* In a porous medium

* Including the possibility to transport fluid in the cracks

* For relatively large domains

* Independent of the underlying discretisation

* Which can be extended to include gas phases etc.



The

| University Department of
A Vs Of « e . .
% Sheffield. Civil and Structural Engineering
Multi-scale approach: Crack propagation not biased by
finite element discretisation
_— ] T~
N ] \
4 S N\ W
— T Y
N
N
L

Mass and momentum

balance on a subgrid scale
Structured or unstructured

finite element discretisation
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Multi-phase medium:
Balance of momentum

v'aw+f)7r :pwﬁg;”

szs,f ﬁﬂ —

Balance of mass
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Balance of momentum for mixture:
v * 0- — p-\.’S

Balance of mass for mixture:

aV - ve+nyV - (vi—v) + Q12 =0
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Balance of momentum for mixture (weak form):
Jrm-¥vsdQ+ [((V-n) o d2+
fl_d[[n ol -nr, dIT = fl_n - t, d2

Balance of mass for mixture (weak form):
—angv-vs dQ+kafvg-vp d
— [ ¢Q7H dQ + [ nr, - [¢ ny(vy — vi)]dT

— fl_Cnr-qp dl
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Subscale model for flow inside crack or shear zone:

Mass balance in cavity: pr+pfV-v=20

Jump in normal fluid velocity: Jw ] = — fhh 2;‘; y

Momentum balance: v(y) = 2u ax L(y? — h?) + vy
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Continuity for Yy = Th ;

Vf — (VS — nf_lkaP) ¥ trd
Coupling term (cf Reynolds” equation).
nylwy — ws]| =

2h3 92%p 2h2 Op Oh Ovy  ~0Oh
nf ( 2h ox QE)

3u 0x? uw Ox Ox

Consequences:

» non-linearity

» higher-order interpolation forp
» non-symmetry
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Discretisation: assumptions for discontinuity:
» Forsolid: u=u+ Hr,u
» For fluid?

B displacement degrees of freedom

O  pressure degree of freedom
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Example for single pressure degree of freedom:
» Forsolid: u ua -+ Hr,u

» Forflud: p=p+Dr,p — Vp=Vp+ Hr,Vp

f

discontinuity in pressure gradient

discontinuity in normal velocity X

» Discontinuity also there for other pressure discretisations
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Discretisation via
enhanced interpolation:

u(x) = Z ¢ (X) (az + Z %(Xﬁw)
=1 =1

e+l

This decouples crack path from initial discretisation:
Cracks can run through finite elements!



Department of
Civil and Structural Engineering

Stationary cracks in a
fluid-saturated medium

Linear-elastic fracture mechanics

p=20

> B

> B

> B

£ %

> / B

> B

n= 0 gi EE q-n= 0

D %5 .
D < Pressure gradient
A A AV AN AY T ATATAL:

Structured mesh (40 x 40)

q.n:—qo



The

Y Department of
> Sheffield. Civil and Structural Engineering

Quasi-static loading

Biaxial test with
an initial imperfection
under axial compression

Tresca-like criterion for
Inception of shear band

pressure
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Extension to dynamic loading and Coulomb criterion for initiation

displacement pressure high ductility
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Isogeometric analysis: use spline functions for

interpolation instead of Lagrange polynomials

splines |
9%

Linear basis functions: \\

no difference between
splines and polynomials

polynomials

Quadratic basis functions
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» Discrete fracture using isogeometric analysis

More accurate stress calculation

B-spline basis
functionsfor p = 1

knot insertion

lowering continuity

o4

order elevation
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automatic satisfaction of local mass balance
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Parameter study: The influence of presence
and direction of cracks on the flow pattern

< 10m

10m /A

|
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O
>
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Ordinate (m)

Fluid velocity in cracks is several orders of
magnitude higher than that in porous medium
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Results in terms of pressures and flow patterns

pressure

without micro-flow with micro-flow
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» Computations that involve strain softening and/or non-associated
plastic flow show mesh dependence. This is caused by loss of
ellipticity, and occurs for any type of discretisation method.

» Solutions involve an enhancement of the constitutive model, e.g.
through addition of viscosity, non-local terms, or through
Inclusion of diffusion phenomena.

» Subgrid scale models for fluid flow in cracks and faults are
needed for large scale calculations.

» They can be carried out within conventional interface elements,
within an extended finite element framework as well as using
Isogeometric finite element analysis.



