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Mechanical behavior of geomaterials (rocks, soils):

 Non-linearity from the onset of loading

 Strong pressure dependence 

 Coupling between shear loading and volumetric response

 Time dependence

 Coupling with diffusion-like phenomena: fluids, thermal heating
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Approaches to constitutive modelling:

 Plasticity

 pressure dependence: Mohr-Coulomb, Drucker-Prager, …

 strain softening

 non-associated plastic flow

 Fracture modelling: 

 Linear Elastic Fracture Mechanics (LEFM)

 Non-linear fracture models: cohesive-zone approach

 Damage models

 scalar valued

 tensor valued
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Pressure dependence: Mohr-Coulomb, Drucker-Prager, …
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Strain softening

Consequence:

Loss of material stability!
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Non-associated plastic flow

Typical experimental outcome
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Non-associated plastic flow

Again: possible loss of material stability:

Negligible or no elastic strain rates:

Elasto-plastic stiffness:

Non-symmetry!
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Example of mesh dependence and lack of convergence upon mesh refinement

Fibre-reinforced epoxy layer (plane-strain conditions, horizontal loading)
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1D example of mesh dependence

Input: strain-softening relation
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1D example of mesh dependence

Output: structural response of bar

• Energy dissipation dependent 

on discretisation

• Zero energy dissipation when

m goes to infinity



 There exists a finite zone ahead of

the crack tip in which fibre breakage, 

micro-cracking and plasticity occur

 Important parameters:

 Tensile strength

 Fracture energy: Energy required to create a unit area of crack

 Shape of decohesion curve

Cohesive-zone models

The cohesive approach to fracture

(important for quasi-brittle failure)

(Dugdale – Barenblatt approach)
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Ductile failure

(metals)

Quasi-brittle failure

(concrete, rocks)

Cohesive-zone models

 Shape of decohesion curve (continued…)

Discrete traction separation law
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1D example of mesh dependence

Smearing out of the fracture energy over a finite width:

Average strain independent of discretisation & size effect introduced:
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One-dimensional wave equation:

Phase velocity:

Imaginary wave speeds

But, it is not the full story!
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 Consequences of strain softening and non-associated plasticity:

 Loss of material stability (Diderot / d’Alembert: stability = “rigid, unmovable”)

 Loss of structural stability

Only equivalent to Lyapunov’s definition 

for small-strain elasticity
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 Consequences of strain softening and non-associated plasticity:

 Loss of uniqueness

 Loss of ellipticity

Mesh sensitivity!
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Possible solutions:

 Include viscosity / rate dependence

 Introduce non-local terms through upscaling / homogenisation

 Include more “physics” in the constitutive description, e.g.,

• Thermal heating 

• Fluid flow, however …

Loss of ellipticity (or hyperbolicity in dynamics) is the underlying 

cause of mesh dependence. It is a fundamental mathematical

issue, and occurs for any numerical method.



o Finite differences in space

o Fully explicit time integration

to avoid numerical 

regularisation

loading scheme softening relation

Impact loading of 1D fluid-saturated medium
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standard

25% finer time step

25% refined mesh

Solution depends on:

oGrid spacing

oTime step
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The World is neither continuous, nor discontinuous

The perception of continuity, or of a discontinuity, 

depends on the level of observation

At a certain level of observation a discontinuity can

be modelled as a continuity (smeared concept), but

equally well as a discontinuity (discrete concept)

In some cases it is meaningful to use a discrete concept



We wish to model the propagation of cracks or shear bands:

• In a porous medium

• Including the possibility to transport fluid in the cracks

• For relatively large domains

• Independent of the underlying discretisation

• Which can be extended to include gas phases etc.

Problem statementDepartment of
Civil and Structural Engineering



Multi-scale approach:

Mass and momentum

balance on a subgrid scale
Structured or unstructured

finite element discretisation

Crack propagation not biased by

finite element discretisation
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Multi-phase medium:

Balance of momentum

Balance of mass

Governing equationsDepartment of
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Balance of momentum for mixture:

Balance of mass for mixture:
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Balance of momentum for mixture (weak form):

Balance of mass for mixture (weak form):
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Subscale model for flow inside crack or shear zone:

Mass balance in cavity:

Equations at discontinuity

Jump in normal fluid velocity:

Momentum balance:
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Coupling term (cf Reynolds’ equation):

Consequences:

 non-linearity

 higher-order interpolation for

 non-symmetry 

Continuity for                   : 
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Discretisation: assumptions for discontinuity:

 For solid:

 For fluid?
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Example for single pressure degree of freedom:

 For solid:

 For fluid:

discontinuity in pressure gradient

discontinuity in normal velocity
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 Discontinuity also there for other pressure discretisations



This decouples crack path from initial discretisation:

Cracks can run through finite elements!

Discretisation via 

enhanced interpolation:

Partition-of-unity methodDepartment of
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Linear-elastic fracture mechanics

Pressure gradient

Example calculations

Stationary cracks in a

fluid-saturated medium
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Structured mesh (40 x 40)



pressure

Example calculations

Quasi-static loading

Biaxial test with

an initial imperfection

under axial compression

Tresca-like criterion for

inception of shear band
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displacement pressure high ductility

Example calculations

Extension to dynamic loading and Coulomb criterion for initiation
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Linear basis functions: 
no difference between 
splines and polynomials Quadratic basis functions

splines

polynomials

Isogeometric analysis: use spline functions for

interpolation instead of Lagrange polynomials
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B-spline basis 
functions for 

knot insertion

=

lowering continuity        

order elevation 

 Discrete fracture using isogeometric analysis

More accurate stress calculation        
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automatic satisfaction of local mass balance

Similarly, better flow calculation in porous media        
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Parameter study: The influence of presence

and direction of cracks on the flow pattern

Fluid velocity in cracks is several orders of 

magnitude higher than that in porous medium
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Results in terms of pressures and flow patterns

without micro-flow with micro-flow
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 Computations that involve strain softening and/or non-associated 

plastic flow show mesh dependence. This is caused by loss of 

ellipticity, and occurs for any type of discretisation method. 

 Solutions involve an enhancement of the constitutive model, e.g. 

through addition of viscosity, non-local terms, or through 

inclusion of diffusion phenomena.

 Subgrid scale models for fluid flow in cracks and faults are 

needed for large scale calculations.

 They can be carried out within conventional interface elements, 

within an extended finite element framework as well as using 

isogeometric finite element analysis.
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